The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites
نویسندگان
چکیده
[1] Seasonal dynamics of atmospheric carbonyl sulfide (OCS) at regional and continental scales and plant OCS exchange at the leaf level have shown a close relationship with those for CO2. CO2 has both sinks and sources within terrestrial ecosystems, but the primary terrestrial exchange for OCS is thought to be leaf uptake, suggesting potential for OCS uptake as a proxy for gross primary production (GPP).We explored the utility of OCS uptake as a GPP proxy in micrometeorological studies of biosphere‐atmosphere CO2 exchange by applying theoretical concepts from earlier OCS studies to estimate GPP. We partitioned measured net ecosystem exchange (NEE) using the ratio of measured vertical mole fraction gradients of OCS and CO2. At the Harvard Forest AmeriFlux site, measured CO2 and OCS vertical gradients were correlated and were related to NEE and GPP, respectively. Estimates of GPP from OCS‐based NEE partitioning were similar to those from established environmental regression techniques, providing evidence that OCS uptake can potentially serve as a GPP proxy. Measured vertical CO2 mole fraction gradients at five other AmeriFlux sites were used to project anticipated vertical OCS mole fraction gradients to provide indication of potential OCS signal magnitudes at sites where no OCSmeasurements were made. Projected OCS gradients at sites with short canopies were greater than those in forests, including measured OCS gradients at Harvard Forest, indicating greater potential for OCS uptake as a GPP proxy at these sites. This exploratory study suggests that continued investigation of linkages between OCS and GPP is warranted.
منابع مشابه
A soil diffusion–reaction model for surface COS flux: COSSM v1
Soil exchange of carbonyl sulfide (COS) is the second largest COS flux in terrestrial ecosystems. A novel application of COS is the separation of gross primary productivity (GPP) from concomitant respiration. This method requires that soil COS exchange is relatively small and can be well quantified. Existing models for soil COS flux have incorporated empirical temperature and moisture functions...
متن کاملA new model of the global biogeochemical cycle of carbonyl sulfide – Part 2: Use of carbonyl sulfide to constrain gross primary productivity in current vegetation models
Clear analogies between carbonyl sulfide (OCS) and carbon dioxide (CO2) diffusion pathways through leaves have been revealed by experimental studies, with plant uptake playing an important role for the atmospheric budget of both species. Here we use atmospheric OCS to evaluate the gross primary production (GPP) of three dynamic global vegetation models (Lund–Potsdam–Jena, LPJ; National Center f...
متن کاملExploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data
Algorithms that use remotely-sensed vegetation indices to estimate gross primary production (GPP), a key component of the global carbon cycle, have gained a lot of popularity in the past decade. Yet despite the amount of research on the topic, the most appropriate approach is still under debate. As an attempt to address this question, we compared the performance of different vegetation indices ...
متن کاملSources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains.
Net photosynthesis is the largest single flux in the global carbon cycle, but controls over its variability are poorly understood because there is no direct way of measuring it at the ecosystem scale. We report observations of ecosystem carbonyl sulfide (COS) and CO2 fluxes that resolve key gaps in an emerging framework for using concurrent COS and CO2 measurements to quantify terrestrial gross...
متن کاملGlobal Analysis of Bioclimatic Controls on Ecosystem Productivity Using Satellite Observations of Solar-Induced Chlorophyll Fluorescence
Ecosystem productivity models rely on regional climatic information to estimate temperature and moisture constraints influencing plant growth. However, the productivity response to these environmental factors is uncertain at the global scale and has largely been defined using limited observations from sparse monitoring sites, including carbon flux towers. Recent studies have shown that satellit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011